Aplikasi Mux-Demux

Aplikasi Perangkap Tikus di Sawah



1. Tujuan
[Kembali]
a.  Memahami karakteristik sensor PIR , vibration sensor dan touch sensor
b. Mensimulasikan rangkaian dari sensor PIR, vibration sensor dan touch sensor dengan menggunakan mux demux
c.  Memahami prinsip kerja sensor PIR , vibration sensor dan touch sensor

2. Alat dan Bahan [Kembali]
a. Baterai
Baterai merupakan sebuah alat yang mengubah energi kimia yang tersimpan menjadi  energi listrik. Pada percobaan kali ini, baterai berfungsi sebagai sumber daya. 
b. Resistor
Resistor merupakan komponen elektronika pasif yang berfungsi untuk membatasi arus yang mengalir pada suatu rangkaian dan berfungsi sebagai terminal antara dua komponen elektronika. Tegangan pada suatu resistor sebanding dengan arus yang melewatinya.

c. Transistor NPN
Transistor merupakan alat semikonduktor yang dapat digunakan sebagai penguat sinyal, pemutus atau penyambung sinyal (switching), stabilisasi tegangan, dan fungsi lainnya. Transistor memiliki 3 kaki yaitu basis, kolektor, dan emitter. 

d. Op Amp

Operasional Amplifier atau lebih dikenal dengan Op Amp adalah suatu komponen elektronika analog yang berfungsi sebagai penguat atau amplifier multiguna. Penguat ini memiliki dua input yaitu inverting dan non-inverting, serta sebuah terminal output. 

e. Sensor Pir
Sensor PIR atau disebut juga Passive Infra Red merupakan sensor yang digunakan untuk mendeteksi adanya pancaran sinar infra merah dari suatu object.



 Spesifikasi:

·         Vin : DC 5V 9V.

·         Radius : 180 derajat.

·         Jarak deteksi : 5 7 meter.

·         Output : Digital TTL.

·         Memiliki setting sensitivitas.

·         Memiliki setting time delay.

·         Dimensi : 3,2 cm x 2,4 cm x 2,3 cm.

·         Berat : 10 gr.




f. Touch Sensor
Sensor Sentuh adalah sensor elektronik yang dapat mendeteksi sentuhan. Sensor Sentuh ini pada dasarnya beroperasi sebagai sakelar apabila disentuh, seperti sakelar pada lampu, layar sentuh ponsel dan lain sebagainya. Sensor Sentuh ini dikenal juga sebagai Sensor Taktil (Tactile Sensor).

Spesifikasi:


g. Sensor Vibration
 Spesifikasi :
    -Vsuplai : DC 3.3V-5V
    -Arus : 15mA
    -Sensor : SW-420 Normally Closed
    -Output : digital
    -Dimensi : 3,8 cm x 1,3 cm x 0,7 cm
    -Berat : 10 g
        
  
        Vibration sensor / Sensor getaran ini memegang peranan penting dalam kegiatan pemantauan sinyal getaran karena terletak di sisi depan (front end) dari suatu proses pemantauan getaran mesin. Secara konseptual, sensor getaran berfungsi untuk mengubah besar sinyal getaran fisik menjadi sinyal getaran analog dalam besaran listrik dan pada umumnya berbentuk tegangan listrik. Pemakaian sensor getaran ini memungkinkan sinyal getaran tersebut diolah secara elektrik sehingga memudahkan dalam proses manipulasi sinyal, diantaranya:
   - Pembesaran sinyal getaran
   - Penyaringan sinyal getaran dari sinyal pengganggu.
   - Penguraian sinyal, dan lainnya.
Sensor getaran dipilih sesuai dengan jenis sinyal getaran yang akan dipantau. Karena itu, sensor getaran dapat dibedakan menjadi:
  - Sensor penyimpangan getaran (displacement transducer)
  - Sensor kecepatan getaran (velocity tranducer)
  - Sensor percepatam getaran (accelerometer).
Pemilihan sensor getaran untuk keperluan pemantauan sinyal getaran didasarkan atas pertimbangan berikut:
  - Jenis sinyal getaran
  -  Rentang frekuensi pengukuran
  -  Ukuran dan berat objek getaran.
  -  Sensitivitas sensor
Berdasarkan cara kerjanya sensor dapat dibedakan menjadi:
   - Sensor aktif, yakni sensor yang langsung menghasilkan tegangan listrik tanpa perlu catu daya
     (power supply) dari luar, misalnya Velocity Transducer.
   - Sensor pasif yakni sensor yang memerlukan catu daya dari luar agar dapat berkerja.

Grafik perbandingan frekuensi dengan sensitivitas sensor getaran :

h. Relay
Relay adalah salah satu komponen elektronika yang berfungsi untuk menyambung dan memutuskan arus listrik dalam sebuah rangkaian. Karena fungsi relay tersebut, itulah mengapa komponen yang satu ini juga disebut sebagai saklar.

Spesifikasi Relay umumnya adalah tegangan input 5 VDC, 12 VDC atau 48 VDC. Untuk common dan NO NC umumnya 220 vac dengan arus kerja 10 A.











3. Dasar Teori [Kembali]
a. Resistor
Resistor adalah komponen elektronika pasif yang memiliki nilai resistansi atau hambatan tertentu yang berfungsi untuk membatasi dan mengatur arus listrik dalam suatu rangkaian elektronika. Satuan Resistor adalah Ohm (simbol: Ω) yang merupakan satuan SI untuk resistansi listrik. Resitor mempunyai nilai resistansi (tahanan) tertentu yang dapat memproduksi tegangan listrik di antara kedua pin dimana nilai tegangan terhadap resistansi tersebut berbanding lurus dengan arus yang mengalir, berdasarkan persamaan hukum Ohm (V = I.R ).

Rumus dari Rangkaian Seri Resistor: Rtotal = R1 + R2 + R3 + ….. + Rn

Rumus dari Rangkaian paralel Resistor: 1/Rtotal = 1/R1 + 1/R2 + 1/R3 + ….. + 1/Rn


Rumus resistor dengan hukum ohm: R = V/I

Cara menghitung nilai resistor:

Tabel dibawah ini adalah warna-warna yang terdapat di tubuh resistor :

Perhitungan untuk resistor dengan 4 gelang warna :

·         Masukkan angka langsung dari kode warna gelang ke-1 (pertama)

·         Masukkan angka langsung dari kode warna gelang ke-2

·         Masukkan Jumlah nol dari kode warna gelang ke-3 atau pangkatkan angka tersebut dengan 10 (10^n)

·         Gelang ke 4 merupakan toleransi dari nilai resistor tersebut

Perhitungan untuk resistor dengan 5 gelang warna :

·         Masukkan angka langsung dari kode warna gelang ke-1 (pertama)

·         Masukkan angka langsung dari kode warna gelang ke-2

·         Masukkan angka langsung dari kode warna gelang ke-3

·         Masukkan Jumlah nol dari kode warna gelang ke-4 atau pangkatkan angka tersebut dengan 10 (10^n)

·         Gelang ke 5 merupakan toleransi dari nilai resistor tersebut.


b. Transistor NPN
Transistor merupakan alat semikonduktor yang dapat digunakan sebagai penguat sinyal, pemutus atau penyambung sinyal, stabilisasi tegangan, dan fungsi lainnya. Transistor memiliki 3 kaki elektroda, yaitu basis, kolektor, dan emitor. Transistor ini diperumpamakan sebagai saklar, yaitu ketika kaki basis diberi arus, maka arus pada kolektor akan mengalir ke emiter yang disebut dengan kondisi ON. Sedangkan ketika kaki basis tidak diberi arus, maka tidak ada arus mengalir dari kolektor ke emitor  yang disebut dengan kondisi OFF. Namun, jika arus yang diberikan pada kaki basis  melebihi arus pada kaki kolektor atau arus pada kaki kolektor adalah nol (karena tegangan kaki kolektor sekitar 0,2 - 0,3 V), maka transistor akan mengalami cutoff  (saklar tertutup). 

Transistor adalah sebuah komponen di dalam elektronika yang diciptakan dari bahan-bahan semikonduktor dan memiliki tiga buah kaki. Masing-masing kaki disebut sebagai basis, kolektor, dan emitor.

·      Emitor (E) memiliki fungsi untuk menghasilkan elektron atau muatan negatif.

·      Kolektor (C) berperan sebagai saluran bagi muatan negatif untuk keluar dari dalam transistor.

·      Basis (B) berguna untuk mengatur arah gerak muatan negatif yang keluar dari transistor melalui kolektor.

 Jenis Transistor:

1.      Bipolar Junction Transistor (BJT)

Bi artinya dua dan Polar asal kata dari polarity yang artinya polaritas, dengan kata lain bipolar junction transistor (BJT) adalah jenis Transistor yang memiliki dua polaritas yaitu hole (lubang) atau elektron sebagai carier (pembawa) untuk menghantarkan arus listrik. Prinsip dasar konstruksinya disusun seperti dari dua buah dioda yang disambungkan pada kutub yang sama yaitu Anoda dengan anoda sehingga menghasilkan transistor jenis NPN atau Katoda dengan katoda yang menjadi transistor jenis PNP.

2.      Unipolar Junction Transistor (UJT

Pada transistor UJT hanya satu polaritas saja yang dijadikan carier/pembawa muatan arus listrik, yaitu elektron saja atau hole/lubangnya saja, tergantung dari jenis transistor UJT tersebut. Karena prinsip kerjanya transistor ini berdasarkan dari efek medan listrik, maka transistor UJT lebih dikenal dengan nama FET (Field Efect Transistor) atau Transistor Efek Medan.

c. Diode
Diode (diode) adalah komponen elektronika aktif yang terbuat dari bahan semikonduktor dan mempunyai fungsi untuk menghantarkan arus listrik ke satu arah tetapi menghambat arus listrik dari arah sebaliknya. Berikut ini adalah fungsi dari dioda antara lain:

·        Untuk alat sensor panas, misalnya dalam amplifier.

·        Sebagai sekering(saklar) atau pengaman.

·        Untuk rangkaian clamper dapat memberikan tambahan partikel DC untuk sinyal AC.

·        Untuk menstabilkan tegangan pada voltage regulator

·        Untuk penyearah

·        Untuk indikator

·        Untuk alat menggandakan tegangan.

·        Untuk alat sensor cahaya, biasanya menggunakan dioda photo. 

Simbol dioda adalah :
Pada grafik terlihat bahwa pada tegangan dibawah ambang batas tegangan mundur (reverse) sebuah dioda akan tembus (menghantar) dan tidak bisa menahan lagi. Batas ini disebut dengan area tegangan breakdown dioda. Kondisi dioda pada area ini adalah tembus atau menghantar dan tidak menghambat. Kemudian pada level tegangan diantara tegangan breakdown dan tegangan forward terdapat area tegangan reverse dan tegangan cut off. Pada area ini kondisi dioda adalah menahan atau tidak mengalirkan arus listrik.

d. Baterai

Baterai adalah perangkat yang terdiri dari satu atau lebih sel elektrokimia dengan koneksi eksternal yang disediakan untuk memberi daya pada perangkat listrik seperti senter, ponsel, dan mobil listrik. Ketika baterai memasok daya listrik, terminal positifnya adalah katode dan terminal negatifnya adalah anoda. Terminal bertanda negatif adalah sumber elektron yang akan mengalir melalui rangkaian listrik eksternal ke terminal positif. Ketika baterai dihubungkan ke beban listrik eksternal, reaksi redoks mengubah reaktan berenergi tinggi ke produk berenergi lebih rendah, dan perbedaan energi-bebas dikirim ke sirkuit eksternal sebagai energi listrik. Secara historis istilah "baterai" secara khusus mengacu pada perangkat yang terdiri dari beberapa sel, namun penggunaannya telah berkembang untuk memasukkan perangkat yang terdiri dari satu sel.

Prinsip operasi

Baterai mengubah energi kimia langsung menjadi energi listrik. Baterai terdiri dari sejumlah sel volta. Tiap sel terdiri dari 2 sel setengah yang terhubung seri melalui elektrolit konduktif yang berisi anion dan kation. Satu sel setengah termasuk elektrolit dan elektrode negatif, elektrode yang di mana anion berpindah; sel-setengah lainnya termasuk elektrolit dan elektrode positif di mana kation berpindah. Reaksi redoks akan mengisi ulang baterai. Kation akan tereduksi (elektron akan bertambah) di katode ketika pengisian, sedangkan anion akan teroksidasi (elektron hilang) di anode ketika pengisian. Ketika digunakan, proses ini dibalik. Elektrodanya tidak bersentuhan satu sama lain, tetapi terhubung via elektrolit. Beberapa sel menggunakan elektrolit yang berbeda untuk tiap sel setengah. Sebuah separator dapat membuat ion mengalir di antara sel-setengah dan bisa menghindari pencampuran elektrolit.


e. Relay
Relay merupakan komponen elektronika berupa saklar atau swirch elektrik yang dioperasikan secara listrik dan terdiri dari 2 bagian utama yaitu Elektromagnet (coil) dan mekanikal (seperangkat kontak Saklar/Switch). Komponen elektronika ini menggunakan prinsip elektromagnetik untuk menggerakan saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. Berikut adalah simbol dari komponen relay.

Pada dasarnya, Relay terdiri dari 4 komponen dasar  yaitu :

·    Electromagnet (Coil)

·    Armature

·    Switch Contact Point (Saklar)

·    Spring

Berikut ini merupakan gambar dari bagian-bagian relay :
Kontak Poin (Contact Point) Relay terdiri dari 2 jenis yaitu :

·         Normally Close (NC) yaitu kondisi awal sebelum diaktifkan akan selalu berada di posisi CLOSE (tertutup)

·         Normally Open (NO) yaitu kondisi awal sebelum diaktifkan akan selalu berada di posisi OPEN (terbuka)


f. Opamp

Operational Amplifier atau lebih dikenal dengan istilah Op-Amp adalah salah satu dari bentuk IC Linear yang berfungsi sebagai penguat sinyal listrik. Sebuah Op-Amp terdiri dari beberapa transistor, dioda, resistor dan kapasitor yang terinterkoneksi dan terintegrasi sehingga memungkinkannya untuk menghasilkan gain (penguatan) yang tinggi pada rentang frekuensi yang luas. Dalam bahasa Indonesia, Op-Amp atau Operational Amplifier sering disebut juga dengan penguat operasional.

Secara umum, Operational Amplifier (Op-Amp) yang ideal memiliki karakteristik sebagai berikut :

·                Penguatan Tegangan Open-loop atau Av = ∞ (tak terhingga)

·                Tegangan Offset Keluaran (Output Offset Voltage) atau Voo = 0 (nol)

·                Impedansi Masukan (Input Impedance) atau Zin= ∞ (tak terhingga)

·                Impedansi Output (Output Impedance ) atau Zout = 0 (nol)

·                Lebar Pita (Bandwidth) atau BW = ∞ (tak terhingga)

·                Karakteristik tidak berubah dengan suhu



g. Motor DC
Motor listrik DC atau DC Motor adalah suatu perangkat yang mengubah energi listrik menjadi energi kinetik atau gerakan (motion). Motor DC ini juga dapat disebut sebagai motor arus searah. Seperti namanya, DC Motor memiliki dua terminal dan memerlukan tegangan arus searah atau DC (Direct Current) untuk dapat menggerakannya.

Prinsip Kerja Motor DC

Terdapat dua bagian utama pada sebuah motor listrik DC, yaitu stator dan rotor. Stator adalah bagian motor yang tidak berputar, bagian yang statis ini terdiri dari rangka dan kumparan medan. Sedangkan rotor adalah bagian yang berputar, terdiri dari kumparan jangkar. Pada prinsipnya motor DC menggunakan fenomena elektromagnet untuk bergerak, ketika arus listrik diberikan ke kumparan, permukaan kumparan yang bersifat utara akan bergerak menghadap ke magnet yang berkutub selatan dan sebaliknya. Karena kutub utara dan selatan kumparan bertemu maka akan terjadi saling tarik menarik yang menyebabkan pergerakan kumparan berhenti.
Untuk menggerakannya lagi, tepat pada saat kutub kumparan berhadapan dengan kutub magnet, arah arus pada kumparan dibalik. Dengan demikian, kutub utara kumparan akan berubah menjadi kutub selatan dan kutub selatannya akan berubah menjadi kutub utara. Pada saat perubahan kutub tersebut terjadi, kutub selatan kumparan akan berhadap dengan kutub selatan magnet dan kutub utara kumparan akan berhadapan dengan kutub utara magnet. Karena kutubnya sama, maka akan terjadi tolak menolak sehingga kumparan bergerak memutar hingga utara kumparan berhadapan dengan selatan magnet dan selatan kumparan berhadapan dengan utara magnet. Pada saat ini, arus yang mengalir ke kumparan dibalik lagi dan kumparan akan berputar lagi karena adanya perubahan kutub. Siklus ini akan berulang-ulang hingga arus listrik pada kumparan diputuskan.


h. Buzzer
Buzzer adalah sebuah komponen elektronika yang berfungsi untuk mengubah getaran listrik menjadi getaran suara. Pada dasarnya prinsip kerja buzzer hampir sama dengan loud speaker, jadi buzzer juga terdiri dari kumparan yang terpasang pada diafragma dan kemudian kumparan tersebut dialiri arus sehingga menjadi elektromagnet, kumparan tadi akan tertarik ke dalam atau keluar, tergantung dari arah arus dan polaritas magnetnya, karena kumparan dipasang pada diafragma maka setiap gerakan kumparan akan menggerakkan diafragma secara bolak-balik sehingga membuat udara bergetar yang akan menghasilkan suara. 

i. LED
LED merupakan sebuah komponen yang menghasilkan cahaya monokromatik ketika diberi tegangan. LED terbuat dari semikonduktor dan  perbedaan warna yang dihasilkan disebabkan perbedaan bahan semikonduktor yang  digunakan. 

LED merupakan keluarga dari Dioda yang terbuat dari Semikonduktor. Cara kerjanya pun hampir sama dengan Dioda yang memiliki dua kutub yaitu kutub Positif (P) dan Kutub Negatif (N). LED hanya akan memancarkan cahaya apabila dialiri tegangan maju (bias forward) dari Anoda menuju ke Katoda. LED terdiri dari sebuah chip semikonduktor yang di doping sehingga menciptakan junction P dan N. Yang dimaksud dengan proses doping dalam semikonduktor adalah proses untuk menambahkan ketidakmurnian (impurity) pada semikonduktor yang murni sehingga menghasilkan karakteristik kelistrikan yang diinginkan. Ketika LED dialiri tegangan maju atau bias forward yaitu dari Anoda (P) menuju ke Katoda (K), Kelebihan Elektron pada N-Type material akan berpindah ke wilayah yang kelebihan Hole (lubang) yaitu wilayah yang bermuatan positif (P-Type material). Saat Elektron berjumpa dengan Hole akan melepaskan photon dan memancarkan cahaya monokromatik (satu warna).

Tegangan maju LED



j. Sensor Pir

Sensor PIR (Passive Infra Red) adalah sensor yang digunakan untuk mendeteksi adanya pancaran sinar infra merah. Sensor PIR bersifat pasif, artinya sensor ini tidak memancarkan sinar infra merah tetapi hanya menerima radiasi sinar infra merah dari luar. Sensor ini biasanya digunakan dalam perancangan detektor gerakan berbasis PIR. Karena semua benda memancarkan energi radiasi, sebuah gerakan akan terdeteksi ketika sumber infra merah dengan suhu tertentu (misal: manusia) melewati sumber infra merah yang lain dengan suhu yang berbeda (misal: dinding), maka sensor akan membandingkan pancaran infra merah yang diterima setiap satuan waktu, sehingga jika ada pergerakan maka akan terjadi perubahan pembacaan pada sensor. Sensor PIR terdiri dari beberapa bagian yaitu :

a) Lensa Fresnel
Lensa Fresnel pertama kali digunakan pada tahun 1980an. Digunakan sebagai lensa yang memfokuskan sinar pada lampu mercusuar. Penggunaan paling luas pada lensa Fresnel adalah pada lampu depan mobil, di mana mereka membiarkan berkas parallel secara kasar dari pemantul parabola dibentuk untuk memenuhi persyaratan pola sorotan utama. Namun kini, lensa Fresnel pada mobil telah ditiadakan diganti dengan lensa plain polikarbonat. Lensa Fresnel juga berguna dalam pembuatan film, tidak hanya karena kemampuannya untuk memfokuskan sinar terang, tetapi juga karena intensitas cahaya yang relative konstan diseluruh lebar berkas cahaya.

b) IR Filter
IR Filter dimodul sensor PIR ini mampu menyaring panjang gelombang sinar infrared pasif antara 8 sampai 14 mikrometer, sehingga panjang gelombang yang dihasilkan dari tubuh manusia yang berkisar antara 9 sampai 10 mikrometer ini saja yang dapat dideteksi oleh sensor. Sehingga Sensor PIR hanya bereaksi pada tubuh manusia saja.

c) Pyroelectric Sensor
Seperti tubuh manusia yang memiliki suhu tubuh kira-kira 32˚C, yang merupakan suhu panas yang khas yang terdapat pada lingkungan. Pancaran sinar inframerah inilah yang kemudian ditangkap oleh Pyroelectric sensor yang merupakan inti dari sensor PIR ini sehingga menyebabkan Pyroelectic sensor yang terdiri dari galium nitrida, caesium nitrat dan litium tantalate menghasilkan arus listrik. Mengapa bisa menghasilkan arus listrik? Karena pancaran sinar inframerah pasif ini membawa energi panas. Material pyroelectric bereaksi menghasilkan arus listrik karena adanya energi panas yang dibawa oleh infrared pasif tersebut. Prosesnya hampir sama seperti arus listrik yang terbentuk ketika sinar matahari mengenai solar cell.

d) Amplifier
Sebuah sirkuit amplifier yang ada menguatkan arus yang masuk pada material pyroelectric.

e) Komparator
Setelah dikuatkan oleh amplifier kemudian arus dibandingkan oleh komparator sehingga mengahasilkan output.

Hampir semua jenis sensor PIR akan memiliki spesifikasi memiliki perbedaan, meskipun semuanya memiliki cara kerja yang sama. Dapat cek perbedaan tersebut dalam datasheet.

·         Ukuran : Persegi

·     Output : Nilai Digital High (3V) saat dipicu (gerakan terdeteksi), dan nilai digital Low saat menganggur (tidak ada gerakan terdeteksi). Panjang pulsa ditentukan oleh resistor dan kapasitor pada PCB.

·         Jangkauan sensitivitas : sampai 20 kaki (6 meters) 110 derajat x 70 derajat jangkauan deteksi

·         Power supply: 3.3V - 5V tegangan input.


Pada grafik tersebut ; (a) Arah yang berbeda mengasilkan tegangan yang bermuatan berbeda ; (b) Semakin dekat jarak objek terhadap sensor PIR, maka semakin besar tegangan output yang dihasilkan ; (c) Semakin cepat objek bergerak, maka semakin cepat terdeteksi oleh sensor PIR karena infrared yang ditimbulkan dengan lebih cepat oleh objek semakin mudah dideteksi oleh PIR, namun semakin sedikit juga waktu yang dibutuhkan karena sudah diluar jangkauan sensor PIR.

Dari grafik, didapatkan bahwa suhu juga mempengaruhi seberapa jauh PIR dapat mendeteksi adanya infrared dimana semakin tinggi suhu disekitar maka semakin pendek jarak yang bisa diukur oleh PIR.

k. Touch Sensor
Touch Sensor atau Sensor Sentuh adalah sensor elektronik yang dapat mendeteksi sentuhan. Sensor Sentuh ini pada dasarnya beroperasi sebagai sakelar apabila disentuh, seperti sakelar pada lampu, layar sentuh ponsel dan lain sebagainya. Sensor Sentuh ini dikenal juga sebagai Sensor Taktil (Tactile Sensor). Seiring dengan perkembangan teknologi, sensor sentuh ini semakin banyak digunakan dan telah menggeser peranan sakelar mekanik pada perangkat-perangkat elektronik.


Berdasarkan fungsinya, Sensor Sentuh dapat dibedakan menjadi dua jenis utama yaitu Sensor Kapasitif dan Sensor Resistif. Sensor Kapasitif atau Capacitive Sensor bekerja dengan mengukur kapasitansi sedangkan sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya.

Sensor Kapasitif
Sensor sentuh Kapasitif merupakan sensor sentuh yang sangat populer pada saat ini, hal ini dikarenakan Sensor Kapasitif lebih kuat, tahan lama dan mudah digunakan serta harga yang relatif lebih murah dari sensor resistif. Ponsel-ponsel pintar saat ini telah banyak yang menggunakan teknologi ini karena juga menghasilkan respon yang lebih akurat.

Berbeda dengan Sensor Resistif yang menggunakan tekanan tertentu untuk merasakan perubahan pada permukaan layar, Sensor Kapasitif memanfaatkan sifat konduktif alami pada tubuh manusia untuk mendeteksi perubahan layar sentuhnya. Layar sentuh sensor kapasitif ini terbuat dari bahan konduktif (biasanya Indium Tin Oxide atau disingkat dengan ITO) yang dilapisi oleh kaca tipis dan hanya bisa disentuh oleh jari manusia atau stylus khusus ataupun sarung khusus yang memiliki sifat konduktif.

Pada saat jari menyentuh layar, akan terjadi perubahaan medan listrik pada layar sentuh tersebut dan kemudian di respon oleh processor untuk membaca pergerakan jari tangan tersebut. Jadi perlu diperhatikan bahwa sentuhan kita tidak akan di respon oleh layar sensor kapasitif ini apabila kita menggunakan bahan-bahan non-konduktif sebagai perantara jari tangan dan layar sentuh tersebut.

Sensor Resistif

Tidak seperti sensor sentuh kapasitif, sensor sentuh resistif ini tidak tergantung pada sifat listrik yang terjadi pada konduktivitas pelat logam. Sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya. Karena tidak perlu mengukur perbedaan kapasitansi, sensor sentuh resistif ini dapat beroperasi pada bahan non-konduktif seperti pena, stylus atau jari di dalam sarung tangan.

Sensor sentuh resistif terdiri dari dua lapisan konduktif yang dipisahkan oleh jarak atau celah yang sangat kecil. Dua lapisan konduktif (lapisan atas dan lapisan bawah) ini pada dasarnya terbuat dari sebuah film. Film-film umumnya dilapisi oleh Indium Tin Oxide yang merupakan konduktor listrik yang baik dan juga transparan (bening).

Cara kerjanya hampir sama dengan sebuah sakelar, pada saat film lapisan atas mendapatkan tekanan tertentu baik dengan jari maupun stylus, maka film lapisan atas akan bersentuhan dengan film lapisan bawah sehingga menimbulkan aliran listrik pada titik koordinat tertentu layar tersebut dan memberikan signal ke prosesor untuk melakukan proses selanjutnya.


m. Gerbang OR
Gerbang OR akan menghasilkan keluaran (Output) Logika 1, jika salah satu dari masukan (Input) bernilai Logika 1 dan jika ingin menghasilkan keluaran (Output) Logika 0, maka semua masukan (Input) harus bernilai Logika 0. Simbol yang menandakan Operasi Gerbang Logika OR adalah Plus (+).

n. 7-Segment
Seven segment merupakan bagian-bagian yang digunakan untuk menampilkan angka atau bilangan decimal. Seven segment tersebut terbagi menjadi 7 batang LED yang disusun membentuk angka 8 dengan menggunakan huruf a-f yang disebut DOT MATRIKS. Setiap segment ini terdiri dari 1 atau 2 LED (Light Emitting Dioda). Seven segment bisa menunjukan angka-angka desimal serta beberapa bentuk tertentu melalui gabungan aktif atau tidaknya LED penyususnan dalam seven segment.

Supaya memudahkan penggunaannnya biasanya memakai sebuah sebuah seven segment driver yang akan mengatur aktif atau tidaknya led-led dalam seven segment sesuai dengan inputan biner yang diberikan. Bentuk tampilan modern disusun sebagai metode 7 bagian atau dot matriks. Jenis tersebut sama dengan namanya, menggunakan sistem tujuh batang led yang dilapis membentuk angka 8 seperti yang ditunjukkan pada gambar di atas. Huruf yang dilihatkan dalam gambar itu ditetapkan untuk menandai bagian-bagian tersebut.

Dengan menyalakan beberapa segmen yang sesuai, akan dapat diperagakan digit-digit dari 0 sampai 9, dan juga bentuk huruf A sampai F (dimodifikasi). Sinyal input dari switches tidak dapat langsung dikirimkan ke peraga 7 bagian, sehingga harus menggunakan decoder BCD (Binary Code Decimal) ke 7 segmen sebagai antar muka. Decoder tersebut terbentuk  dari pintu-pintu akal yang masukannya berbetuk digit BCD dan keluarannya berupa saluran-saluran untuk mengemudikan tampilan 7 segmen.


o. Decoder (IC 7447)

IC BCD 7447 merupakan IC yang bertujuan mengubah data BCD (Binary Coded Decimal) menjadi suatu data keluaran untuk seven segment. IC 7447 yang bekerja pada tegangan 5V ini khusus untuk menyalakan seven segment dengan konfigurasi common anode. Sedangkan untuk menyalakan tampilan seven segment yang bekerja pada konfigurasi common cathode menggunakan IC BCD 7448. 

IC ini sangat membantu untuk meringkas masukan seven segmen dengan jumlah 7 pin, sedangkan jika menggunakan BCD cukup dengan 4 bit masukan. IC BCD bisa juga disebut dengan driver seven segment. Berikut konfigurasi Pin IC 7447.

Konfigurasi Pin Decoder:
a) Pin Input IC BCD, memiliki fungsi sebagai masukan IC BCD yang terdiri dari 4 Pin, nama pin masukan BCD dilangkan dengan huruf kapital yaitu A, B, C  dan D. Pin input berkeja dengan logika High=1.
b) Pin Ouput IC BCD, memiliki fungsi untuk mengaktifkan seven segmen sesuai data yang diolah dari pin input. Pin output berjumlah 7 pin yang namanya dilambangkan dengan aljabar huruf kecil yaitu, b, c, d, e, f dan g. Pin Output bekerja dengan logika low=0. Karena itulah IC 7447 digunakan untuk seven segment common anode.
c) Pin LT (Lamp Test) memiliki fungsi untuk mengaktifkan semua output menjadi aktif low,  sehingga semua led pada seven segmen menyala dan menampilkan angka 8. Pin LT akan aktif jika diberi logika low. Pin ini juga digunakan untuk mengetes kondisi LED pada seven segment.
d) Pin RBI (Ripple Blanking Input) memiliki fungsi untuk menahan data input (disable input), pin RBI akan aktif jika diberi logika low. Sehingga seluruh pin output akan berlogika High,  dan seven segment tidak aktif.
e) Pin RBO (Ripple blanking Output) memiliki fungsi untuk menahan data output (disable  output), pin RBO ini akan aktif jika diberikan logika Low. Sehingga seluruh pin output akan berlogika High, dan seven segment tidak aktif.

Pada aplikasi IC dekoder 7447, ketiga pin (LT, RBI dan RBO) harus diberi logika HIGH=1 agar tidak aktif. Baik IC 7447 atau 7448 pada bagian output perlu dipasang resistor untuk membatasi arus yang keluar sehingga led pada seven segment bekerja secara optimal. Berikut ini rangkaian IC dekoder 7448 untuk konfigurasi seven segment common cathode.




4. Percobaan [Kembali]
Prosedur percobaan

1.  Buka aplikasi proteus

2.  Siapkan alat dan bahan pada library proteus, pada rangkaian ini yaitu berupa resistor, diode, baterai, transistor NPN, DC voltmeter, relay, opamp, ground, motor DC, sensor PIR, touch sensor, vibration sensor LED, buzzer, decoder (IC 7447), 7 segment, gerbang OR.

3.   Rangkai setiap alat dan bahan agar membentuk rangkaian yang diinginkan.

4.   Ubah spesifikasi komponen sesuai kebutuhan

5. Jalankan simulasi rangkaian untuk melihat apakah dihasilkan output yang diinginkan, yaitu apakah dapat mengaktifkan relay serta menghidupkan buzzer, led, dan motor.

Gambar Rangkaian :

Ketika Dijalankan :


Prinsip Kerja
Sensor yang digunakan pada aplikasi perangkap tikus ini ada tiga yaitu : sensor pir, sensor touch dan sensor getar. 
Pertama dari sensor PIR berfungsi untuk mendeteksi tikus masuk kedalam perangkap. Sehingga sensor PIR akan berlogika 1 sehingga arus mengalir dari VCC menuju sensor. Sensor mengeluarkan output tegangan sebesar 5V menuju IC 74LS47 yang dihubungkan pada input kaki A. Maka melalui IC 74LS47 ini merupakan IC Encoder sehingga akan mengeluarkan output a - f itu high dan g low. Lalu untuk keluaran sensor PIR setelah IC ini dihubungkan dari output kaki 9 (QE) dengan tegangan 4.65V menuju resistor dan diumpankan ke kaki basis transistor. Lalu dengan tegangan sebesar ini dapat mengaktifkan transistor sehingga arus mengalir dari VCC menuju Relay lalu ke kaki kolektor diumpankan ke kaki emitor dan menuju grown , ini mengakibatkan switch berpindah dari kanan ke kiri sehingga Buzzer aktif dan LED Green hidup menandakan tikus telah masuk ke dalam perangkap.

Kedua, Sensor Touch diletakkan dibagian luar perangkap berfungsi untuk membuka dan menutup pintu perangkap. Dimana ketika sensor mendeteksi adanya sentuhan mengakibatkan sensor berlogika 1. Sehingga arus mengalir dari VCC menuju sensor. Sensor mengeluarkan output tegangan sebesar 5V menuju IC 74LS47 yang dihubungkan pada input kaki A. Maka melalui IC 74LS47 ini merupakan IC Encoder sehingga akan mengeluarkan output a - c high dan d - g low. Lalu untuk keluaran sensor Touch setelah IC ini dihubungkan dari output kaki 11 (QC) dengan tegangan 4.65V menuju resistor dan diumpankan ke salah satu kaki input IC4071 dengan prinsip logika OR , dimana salah satu inputnya berbeda atau sama-sama 1 maka outputnya berlogika 1 High lalu outputnya dihubungkan dengan kaki basis transistor dimana terdapat tegangan sebesar 1.01V, dengan tegangan sebesar ini transistor dapat aktif sehingga arus dari VCC menuju relay lalu menuju kaki kolektor diumpankan ke kaki emitor dan menuju grown, ini mengakibatkan switch berpindah dari kanan ke kiri sehingga motor penutup perangkap aktif dan ikus telah terperangkap ke dalam perangkap.
Lalu ketika sensor tidak mendeteksi sentuhan maka transistor tidak aktif sehingga tidak ada arus mengalir dari VCC menuju relay mengakibatkan switch berpindah ke kanan dan motor pembuka pintu akan aktif.

Ketiga, sensor getar diletakkan pada bagian bawah kandang untuk mendeteksi getaran yang ditimbulkan oleh tikus. Dimana ketika sonsor mendeteksi adanya getaran akan mengakibatkan sensor berlogika 1. Maka arus dari VCC mengalir menuju sensor. Sensor mengeluarkan output tegangan sebesar 5V menuju resistor lalu diumpankan ke salah satu kaki input IC4071 dengan prinsip logika OR , dimana salah satu inputnya berbeda atau sama-sama 1 maka outputnya berlogika 1 High lalu outputnya dihubungkan dengan kaki basis transistor dimana terdapat tegangan sebesar 1.01V, dengan tegangan sebesar ini transistor dapat aktif sehingga arus dari VCC menuju relay lalu menuju kaki kolektor diumpankan ke kaki emitor dan menuju grown, ini mengakibatkan switch berpindah dari kanan ke kiri sehingga motor penutup perangkap aktif dan ikus telah terperangkap ke dalam perangkap.

Lalu pada bagian seven segment sebagai indikator jumlah tikus dihubungkan dari ketiga sensor , pada sensor touch dan getar itu dihubungkan dengan IC 4071 dimana outputnya dihubungkan dengan salah satu kaki input IC 4081 dan juga dihubungkan dengan sensor PIR. Pada saat sensor PIR logika 1 dan sensor touch / vibration / ketiganya aktif maka output dari IC 4081 akan logika 1 yang dihubungkan dengan kaki A IC4556 , lalu output yang dihasilkannya dihubungkan dari kaki Q1 dan Q2 pada ic inverting lalu dihubungkan masing-masing dengan IC 4026 dengan prinsip demultiplexer. Ketika IC 4026 ini mendeteksi inputan high maka outputnya akan naik dari 0 ke 1 dan seterusnya sama angka 9. kaki A - G dihubungkan ke seven segment untuk menampilkan angka banyak tikus terperangkap. Pada seven segment digunakan 2 buah IC 4026 yang dapat mendeteksi tikus sampai 99 ekor.  


5. Video [Kembali]


6. Link Download [Kembali]
    Download HTML [klik disini]
    Download File Rangkaian [klik disini]
    Download Video Rangkaian [klik disini]
    Download Datasheet Resistor [klik disini]
    Download Datasheet Transistor NPN [klik disini]
    Download Datasheet Opamp [klik disini]
    Download Datasheet Potensiometer [klik disini]
    Download Datasheet Dioda [klik disini]
    Download Datasheet LED [klik disni]
    Download Datasheet Relay [klik disini]
    Download Datasheet Motor DC [klik disini]
    Download Datasheet Baterai [klik disini]
    Download Datasheet 4081 (gerbang AND) [klik disini]
    Download Datasheet 4071 (gerbang NOR) [klik disini]
    Download Datasheet 4556 [klik disini]
    Download Datasheet 74LS47 [klik disini]
    Download Datasheet 4026 [klik]
    Download Datasheet Touch Sensor [klik disini]
    Download Library Touch Sensor [klik disini]
    Download Datasheet Pir Sensor [klik disini]
    Download Library Pir Sensor [klik disini]
    Download Datasheet Vibration Sensor [klik disini]
    Download Library Vibration Sensor [klik disini]
    Download Datasheet APDS9002 Sensor [klik]