Aplikasi Tugas Besar

APLIKASI KONTROL TANAMAN OTOMATIS


 1. Tujuan[kembali]

  • Mempelajari rangkaian aplikasi multiplexer, demultiplexer, encoder, dan decoder
  • Mempelajari prinsip kerja aplikasi kontrol penyiram tanaman menggunakan rain sensor, vibration sensor,soil moisture sensor dan phototransistor
  • Mempelajari simulasi rangkaian aplikasi kontrol penyiram tanaman 


 2. alat dan bahan[kembali]

1. Voltmeter

DC Voltemeter merupakan alat ukur yang digunakan untuk mnegukur tegangan DC. 

2. Baterai

     Digunakan sebagai sumber tegangan pada rangkaian.
  Konfigurasi pin

     Spesifikasi

 


 
A. Resistor


Spesifikasi resistor yang digunakan:

a. Resistor 10 ohm

b. Resistor 220 ohm

c. Resistor 10k ohm


            Datasheet resistor

 



B. Logic State

     


C. Transistor NPN



                Transistor NPN merupakan jenis transistor bipolar yang menggunakan arus listrik kecil dan tegangan positif pada terminal Basis untuk mengendalikan aliran arus dan tegangan yang lebih besar dari Kolektor ke Emitor. Komponen ini berfungsi sebagai penguat, pemutus dan penyambung (switching), stabilitasi tegangan, modulasi sinyal, dan lain lain. 

    Spesifikasi dan konfigurasi pin:


Spesifikasi

D. Relay


Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch). Relay menggunakan Prinsip Elektromagnetik untuk menggerakkan Kontak Saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. 

Spesifikasi tipe relay: 5VDC-SL-C
Tegangan coil: DC 5V
Struktur: Sealed type
Sensitivitas coil: 0.36W
Tahanan coil: 60-70 ohm
Kapasitas contact: 10A/250VAC, 10A/125VAC, 10A/30VDC, 10A/28VDC
Ukuran: 196154155 mm
Jumlah pin: 5

Konfigurasi Pin


 


 Datasheet Relay

 


E. Dioda




Dioda adalah komponen aktif dua kutub yang pada umumnya bersifat semikonduktor, yang memperbolehkan arus listrik mengalir ke satu arah (kondisi panjar maju) dan menghambat arus dari arah sebaliknya (kondisi panjar mundur).

F. LED
 

G. OP-AMP


Operational Amplifier atau lebih dikenal dengan istilah Op-Amp adalah salah satu dari bentuk IC Linear yang berfungsi sebagai Penguat Sinyal listrik. Sebuah Op-Amp terdiri dari beberapa Transistor, Dioda, Resistor dan Kapasitor yang terinterkoneksi dan terintegrasi sehingga memungkinkannya untuk menghasilkan Gain (penguatan) yang tinggi pada rentang frekuensi yang luas.

 



H. Motor DC


Motor Listrik DC atau DC Motor adalah suatu perangkat yang mengubah energi listrik menjadi energi kinetik atau gerakan (motion). Motor DC ini juga dapat disebut sebagai Motor Arus Searah. 
Konfigurasi Pin

 Pin 1 : Terminal 1

 Pin 2 : Terminal 2

                Spesifikasi Motor DC


I. Sensor Getar




Spesifikasi:

·         Vin : DC 5V 9V.

·         Radius : 180 derajat.

·         Jarak deteksi : 5 7 meter.

·         Output : Digital TTL.

·         Memiliki setting sensitivitas.

·         Memiliki setting time delay.

·         Dimensi : 3,2 cm x 2,4 cm x 2,3 cm.

·         Berat : 10 gr.



  j. Buzzer

Buzzer Features and Specifications

  • Rated Voltage: 6V DC
  • Operating Voltage: 4-8V DC
  • Rated current: <30mA
  • Sound Type: Continuous Beep
  • Resonant Frequency: ~2300 Hz 
  • Small and neat sealed package
  • Breadboard and Perf board friendly
 K.  Switch 

Features 
• Constant ON resistance for signals ±10V and 100 kHz connection diagram
 • tOFF < tON. break before make action
 • Open switch isolation at 1.0 MHz -50 dB
 • < 1.0 nA leakage in OFF state • TTL. DTL. RTL direct drive compatibility
 • Single disable pin turns all sWitches in package OFF  



L. Sensor Hujan


Spesifikasi:

·         Vin : DC 5V 9V.

·         Radius : 180 derajat.

·         Jarak deteksi : 5 7 meter.

·         Output : Digital TTL.

·         Memiliki setting sensitivitas.

·         Memiliki setting time delay.

·         Dimensi : 3,2 cm x 2,4 cm x 2,3 cm.

·         Berat : 10 gr.






 3.Dasar teori[kembali]

a. Resistor
    Resistor adalah komponen elektronika pasif yang memiliki nilai resistansi atau hambatan tertentu yang berfungsi untuk membatasi dan mengatur arus listrik dalam suatu rangkaian elektronika. Satuan Resistor adalah Ohm (simbol: Ω) yang merupakan satuan SI untuk resistansi listrik. Resitor mempunyai nilai resistansi (tahanan) tertentu yang dapat memproduksi tegangan listrik di antara kedua pin dimana nilai tegangan terhadap resistansi tersebut berbanding lurus dengan arus yang mengalir, berdasarkan persamaan hukum Ohm (V = I.R ).


Cara menghitung nilai resistansi resistor dengan gelang warna:

1. Masukkan angka langsung dari kode warna gelang pertama.

2. Masukkan angka langsung dari kode warna gelang kedua.

3. Masukkan angka langsung dari kode warna gleang ketiga.

4. Masukkan jumlah nol dari kode warna gelang ke-4 atau pangkatkan angka tersebut dengan 10 (10^n), ini merupakan nilai toleransi dari resistor.




    b. Transistor NPN

            Transistor merupakan alat semikonduktor yang dapat digunakan sebagai penguat sinyal, pemutus atau penyambung sinyal, stabilisasi tegangan, dan fungsi lainnya. Transistor memiliki 3 kaki elektroda, yaitu basis, kolektor, dan emitor. Pada rangkaian kali ini digunakan transistor 2SC1162 bertipe NPN. Transistor ini diperumpamakan sebagai saklar, yaitu ketika kaki basis diberi arus, maka arus pada kolektor akan mengalir ke emiter yang disebut dengan kondisi ON. Sedangkan ketika kaki basis tidak diberi arus, maka tidak ada arus mengalir dari kolektor ke emitor  yang disebut dengan kondisi OFF. Namun, jika arus yang diberikan pada kaki basis  melebihi arus pada kaki kolektor atau arus pada kaki kolektor adalah nol (karena tegangan kaki kolektor sekitar 0,2 - 0,3 V), maka transistor akan mengalami cutoff  (saklar tertutup).

Transistor adalah sebuah komponen di dalam elektronika yang diciptakan dari bahan-bahan semikonduktor dan memiliki tiga buah kaki. Masing-masing kaki disebut sebagai basis, kolektor, dan emitor.

Emitor (E) memiliki fungsi untuk menghasilkan elektron atau muatan negatif.

Kolektor (C) berperan sebagai saluran bagi muatan negatif untuk keluar dari dalam transistor.

Basis (B) berguna untuk mengatur arah gerak muatan negatif yang keluar dari transistor melalui kolektor.

Rumus:



     C. Relay


            Relay merupakan komponen elektronika berupa saklar atau swirch elektrik yang dioperasikan secara listrik dan terdiri dari 2 bagian utama yaitu Elektromagnet (coil) dan mekanikal (seperangkat kontak Saklar/Switch). Komponen elektronika ini menggunakan prinsip elektromagnetik untuk menggerakan saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. Berikut adalah simbol dari komponen relay.

Pada dasarnya, Relay terdiri dari 4 komponen dasar  yaitu :

1. Electromagnet (Coil)

2. Armature

3. Switch Contact Point (Saklar)

4. Spring

 Gambar dari bagian-bagian relay  

Kontak Poin (Contact Point) Relay terdiri dari 2 jenis yaitu :

Normally Close (NC) yaitu kondisi awal sebelum diaktifkan akan selalu berada di posisi CLOSE (tertutup)

Normally Open (NO) yaitu kondisi awal sebelum diaktifkan akan selalu berada di posisi OPEN (terbuka)

Konfigurasi pin:


Spesifikasi:


    d. Dioda 

            Diode (diode) adalah komponen elektronika aktif yang terbuat dari bahan semikonduktor dan mempunyai fungsi untuk menghantarkan arus listrik ke satu arah tetapi menghambat arus listrik dari arah sebaliknya. Berikut ini adalah fungsi dari dioda antara lain:

·                     Untuk alat sensor panas, misalnya dalam amplifier.

·                     Sebagai sekering(saklar) atau pengaman.

·                     Untuk rangkaian clamper dapat memberikan tambahan partikel DC untuk sinyal AC.

·                     Untuk menstabilkan tegangan pada voltage regulator

·                     Untuk penyearah

·                     Untuk indikator

·                     Untuk alat menggandakan tegangan.

·                     Untuk alat sensor cahaya, biasanya menggunakan dioda photo. 

Simbol dioda adalah :

 

Untuk menentukan arus zenner  berlaku persamaan:

 



                Pada grafik terlihat bahwa pada tegangan dibawah ambang batas tegangan mundur (reverse) sebuah dioda akan tembus (menghantar) dan tidak bisa menahan lagi. Batas ini disebut dengan area tegangan breakdown dioda. Kondisi dioda pada area ini adalah tembus atau menghantar dan tidak menghambat. Kemudian pada level tegangan diantara tegangan breakdown dan tegangan forward terdapat area tegangan reverse dan tegangan cut off. Pada area ini kondisi dioda adalah menahan atau tidak mengalirkan arus listrik.

    e. Lampu 



Lampu Listrik adalah suatu perangkat yang dapat menghasilkan cahaya saat dialiri arus listrik. Arus listrik yang dimaksud ini dapat berasal tenaga listrik yang dihasilkan oleh pembangkit listrik terpusat (Centrally Generated Electric Power) seperti PLN dan Genset ataupun tenaga listrik yang dihasilkan oleh Baterai dan Aki.

 

Jenis Jenis Lampu Listrik

 

Seiring dengan perkembangan Teknologi, Lampu Listrik juga telah mengalami berbagai perbaikan dan  kemajuan. Teknologi Lampu Listrik bukan saja Lampu Pijar yang ditemukan oleh Thomas Alva Edison saja namun sudah terdiri dari berbagai jenis dan Teknologi. Pada dasarnya, Lampu Listrik dapat dikategorikan dalam Tiga jenis yaitu Incandescent Lamp (Lampu Pijar), Gas-discharge Lamp (Lampu Lucutan Gas) dan Light Emitting Diode (Lampu LED).

 

Lampu Pijar (Incandescent Lamp)

 

Lampu Pijar atau disebut juga Incandescent Lamp adalah jenis lampu listrik yang menghasilkan cahaya dengan cara memanaskan Kawat Filamen di dalam bola kaca yang diisi dengan gas tertentu seperti  nitrogen, argon, kripton  atau hidrogen. Kita dapat menemukan Lampu Pijar dalam berbagai pilihan Tegangan listrik yaitu Tegangan listrik yang berkisar dari 1,5V hingga 300V.

 

Lampu Pijar yang dapat bekerja pada Arus DC maupun Arus AC ini banyak digunakan di Lampu Penerang Jalan, Lampu Rumah dan Kantor, Lampu Mobil, Lampu Flash dan juga Lampu Dekorasi.  Pada umumnya Lampu Pijar hanya dapat bertahan sekitar 1000 jam dan memerlukan Energi listrik yang lebih banyak dibandingkan dengan jenis-jenis lampu lainnya.

 

Lampu Lucutan Gas (Gas discharge Lamp)

 

Lampu lucutan gas menghasilkan cahaya dengan mengirimkan lucutan elektris melalui gas yang terionisasi, misalnya pada plasma. Sifat lucutan gas sangat tergantung pada frekuensi atau modulasi arus listriknya. Biasanya, lampu lampu ini menggunakan gas mulia (argon, neon, kripton, dan xenon) atau campuran dari gas-gas tersebut. Sebagian besar lampu-lampu ini juga mengandung bahan-bahan tambahan, seperti merkuri, natrium, dan/atau halida logam.

 

Lampu LED (Light Emitting Diode)

Lampu LED adalah komponen elektronika yang dapat memancarkan  cahaya monokromatik ketika diberikan tegangan maju. LED merupakan keluarga Dioda yang terbuat dari bahan semikonduktor. Warna warna Cahaya yang dipancarkan oleh LED tergantung pada jenis bahan semikonduktor yang dipergunakannya. LED juga dapat memancarkan sinar inframerah yang tidak tampak oleh mata seperti yang sering kita jumpai pada Remote Control TV ataupun Remote Control perangkat elektronik lainnya.

    f. OpAmp 

 Op-Amp adalah salah satu dari bentuk IC Linear yang berfungsi sebagai Penguat Sinyal listrik. Sebuah Op-Amp terdiri dari beberapa Transistor, Dioda, Resistor dan Kapasitor yang terinterkoneksi dan terintegrasi sehingga memungkinkannya untuk menghasilkan Gain (penguatan) yang tinggi pada rentang frekuensi yang luas.

 Simbol 

Karakteristik IC OpAmp

· Penguatan Tegangan Open-loop atau Av = ∞ (tak terhingga)

· Tegangan Offset Keluaran (Output Offset Voltage) atau Voo = 0 (nol)

· Impedansi Masukan (Input Impedance) atau Zin= ∞ (tak terhingga)

· Impedansi Output (Output Impedance ) atau Zout = 0 (nol)

· Lebar Pita (Bandwidth) atau BW = ∞ (tak terhingga)

· Karakteristik tidak berubah dengan suhu 



Inverting Amplifier


Rumus:


NonInverting 


Rumus:


Komparator


Rumus:


Adder


Rumus:


Bentuk Gelombang


    g.  Motor DC    

Motor Listrik DC atau DC Motor adalah suatu perangkat yang mengubah energi listrik menjadi energi kinetik atau gerakan (motion). Motor DC ini juga dapat disebut sebagai Motor Arus Searah. Seperti namanya, DC Motor memiliki dua terminal dan memerlukan tegangan arus searah atau DC (Direct Current) untuk dapat menggerakannya. Motor Listrik DC ini biasanya digunakan pada perangkat-perangkat Elektronik dan listrik yang menggunakan sumber listrik DC seperti Vibrator Ponsel, Kipas DC dan Bor Listrik DC.


 Prinsip Kerja Motor DC

Terdapat dua bagian utama pada sebuah Motor Listrik DC, yaitu Stator dan Rotor. Stator adalah bagian motor yang tidak berputar, bagian yang statis ini terdiri dari rangka dan kumparan medan. Sedangkan Rotor adalah bagian yang berputar, bagian Rotor ini terdiri dari kumparan Jangkar. Dua bagian utama ini dapat dibagi lagi menjadi beberapa komponen penting yaitu diantaranya adalah Yoke (kerangka magnet), Poles (kutub motor), Field winding (kumparan medan magnet), Armature Winding (Kumparan Jangkar), Commutator (Komutator) dan Brushes (kuas/sikat arang).

Pada prinsipnya motor listrik DC menggunakan fenomena elektromagnet untuk bergerak, ketika arus listrik diberikan ke kumparan, permukaan kumparan yang bersifat utara akan bergerak menghadap ke magnet yang berkutub selatan dan kumparan yang bersifat selatan akan bergerak menghadap ke utara magnet. Saat ini, karena kutub utara kumparan bertemu dengan kutub selatan magnet ataupun kutub selatan kumparan bertemu dengan kutub utara magnet maka akan terjadi saling tarik menarik yang menyebabkan pergerakan kumparan berhenti.

Untuk menggerakannya lagi, tepat pada saat kutub kumparan berhadapan dengan kutub magnet, arah arus pada kumparan dibalik. Dengan demikian, kutub utara kumparan akan berubah menjadi kutub selatan dan kutub selatannya akan berubah menjadi kutub utara. Pada saat perubahan kutub tersebut terjadi, kutub selatan kumparan akan berhadap dengan kutub selatan magnet dan kutub utara kumparan akan berhadapan dengan kutub utara magnet. Karena kutubnya sama, maka akan terjadi tolak menolak sehingga kumparan bergerak memutar hingga utara kumparan berhadapan dengan selatan magnet dan selatan kumparan berhadapan dengan utara magnet. Pada saat ini, arus yang mengalir ke kumparan dibalik lagi dan kumparan akan berputar lagi karena adanya perubahan kutub. Siklus ini akan berulang-ulang hingga arus listrik pada kumparan diputuskan.

    h. Baterai 

Baterai adalah perangkat yang terdiri dari satu atau lebih sel elektrokimia dengan koneksi eksternal yang disediakan untuk memberi daya pada perangkat listrik seperti senter, ponsel, dan mobil listrik. Ketika baterai memasok daya listrik, terminal positifnya adalah katode dan terminal negatifnya adalah anoda. Terminal bertanda negatif adalah sumber elektron yang akan mengalir melalui rangkaian listrik eksternal ke terminal positif. Ketika baterai dihubungkan ke beban listrik eksternal, reaksi redoks mengubah reaktan berenergi tinggi ke produk berenergi lebih rendah, dan perbedaan energi-bebas dikirim ke sirkuit eksternal sebagai energi listrik. Secara historis istilah "baterai" secara khusus mengacu pada perangkat yang terdiri dari beberapa sel, namun penggunaannya telah berkembang untuk memasukkan perangkat yang terdiri dari satu sel.


Prinsip operasi

Baterai mengubah energi kimia langsung menjadi energi listrik. Baterai terdiri dari sejumlah sel volta. Tiap sel terdiri dari 2 sel setengah yang terhubung seri melalui elektrolit konduktif yang berisi anion dan kation. Satu sel setengah termasuk elektrolit dan elektrode negatif, elektrode yang di mana anion berpindah; sel-setengah lainnya termasuk elektrolit dan elektrode positif di mana kation berpindah. Reaksi redoks akan mengisi ulang baterai. Kation akan tereduksi (elektron akan bertambah) di katode ketika pengisian, sedangkan anion akan teroksidasi (elektron hilang) di anode ketika pengisian. Ketika digunakan, proses ini dibalik. Elektrodanya tidak bersentuhan satu sama lain, tetapi terhubung via elektrolit. Beberapa sel menggunakan elektrolit yang berbeda untuk tiap sel setengah. Sebuah separator dapat membuat ion mengalir di antara sel-setengah dan bisa menghindari pencampuran elektrolit.



i. Sensor Vibration



 





        Vibration sensor / Sensor getaran ini memegang peranan penting dalam kegiatan pemantauan sinyal getaran karena terletak di sisi depan (front end) dari suatu proses pemantauan getaran mesin. Secara konseptual, sensor getaran berfungsi untuk mengubah besar sinyal getaran fisik menjadi sinyal getaran analog dalam besaran listrik dan pada umumnya berbentuk tegangan listrik. Pemakaian sensor getaran ini memungkinkan sinyal getaran tersebut diolah secara elektrik sehingga memudahkan dalam proses manipulasi sinyal, diantaranya:
   - Pembesaran sinyal getaran
   - Penyaringan sinyal getaran dari sinyal pengganggu.
   - Penguraian sinyal, dan lainnya.
Sensor getaran dipilih sesuai dengan jenis sinyal getaran yang akan dipantau. Karena itu, sensor getaran dapat dibedakan menjadi:
  - Sensor penyimpangan getaran (displacement transducer)
  - Sensor kecepatan getaran (velocity tranducer)
  - Sensor percepatam getaran (accelerometer).
Pemilihan sensor getaran untuk keperluan pemantauan sinyal getaran didasarkan atas pertimbangan berikut:
  - Jenis sinyal getaran
  -  Rentang frekuensi pengukuran
  -  Ukuran dan berat objek getaran.
  -  Sensitivitas sensor
Berdasarkan cara kerjanya sensor dapat dibedakan menjadi:
   - Sensor aktif, yakni sensor yang langsung menghasilkan tegangan listrik tanpa perlu catu daya
     (power supply) dari luar, misalnya Velocity Transducer.
   - Sensor pasif yakni sensor yang memerlukan catu daya dari luar agar dapat berkerja.


Grafik perbandingan frekuensi dengan sensitivitas sensor getaran :


j. Phototransistors

            Phototransistors adalah perangkat photojunction mirip dengan transistor kecuali bahwa sinyal yang diperkuat adalah pasangan muatan yang dihasilkan oleh input optik. Seperti halnya transistor, phototransistors dapat memiliki gain tinggi. Fototransistor dapat dibuat pada silikon menggunakan junction p-dan n-type atau dapat menjadi heterostructures. Gambar 56.8 menunjukkan sketsa struktur phototransistor bipolar sederhana, yang pada dasarnya sama dengan transistor bipolar sederhana. Perbedaan utama adalah persimpangan basis-kolektor yang lebih besar, yang merupakan daerah peka cahaya. Hal ini menghasilkan kapasitansi junction yang lebih besar dan, meskipun perangkat memiliki gain, kapasitansi memberikan respon frekuensi phototransistors lebih rendah daripada dioda.



GAMBAR 56.8 Representasi skematik dari phototransistor bipolar sederhana.
Perhatikan bahwa phototransistor memiliki titik p-n yang besar
wilayah yang merupakan bagian fotosensitif dari perangkat
Menggunakan teknologi transistor film tipis (TFT) yang dikembangkan untuk display panel datar, array besar phototransistors dapat dibuat pada silikon amorphous untuk membentuk perangkat pencitraan yang dapat digunakan di tempat teknologi pencitraan lain seperti tabung vidicon atau bahkan film. Contohnya adalah detektor luas (ratusan sentimeter persegi) yang diselidiki untuk digunakan dalam radiografi medis dengan menggabungkan susunan TFT dengan layar fosfor radiografi [4] atau digabungkan ke film semikonduktor [5].

Struktur Phototransistor

Photo Transistor dirancang khusus untuk aplikasi pendeteksian cahaya sehingga memiliki Wilayah Basis dan Kolektor yang lebih besar dibanding dengan Transistor normal umumnya. Bahan Dasar Photo Transistor pada awalnya terbuat dari bahan semikonduktor seperti Silikon dan Germanium yang membentuk struktur Homo-junction. Namun seiring dengan perkembangannya, Photo Transistor saat ini lebih banyak menggunakan bahan semikonduktor seperti Galium Arsenide yang tergolong dalam kelompok Semikonduktor III-V sehingga membentuk struktur Hetero-junction yang memberikan efisiensi konversi lebih tinggi. Yang dimaksud dengan Hetero-junction atau Heterostructure adalah Struktur yang menggunakan bahan yang berbeda pada kedua sisi persimpangan PN.
Photo Transistor pada umumnya dikemas dalam bentuk transparan pada area dimana Photo Transistor tersebut menerima cahaya.

Bentuk dan Simbol Phototransistor

Photo Transistor pada umumnya dikemas dalam bentuk transparan pada area dimana Photo Transistor tersebut menerima cahaya.   Berikut ini adalah bentuk dan simbol Photo Transistor (Transistor Foto).

Prinsip Kerja Photo Transistor

Cara kerja Photo Transistor atau Transistor Foto hampir sama dengan Transistor normal pada umumnya, dimana arus pada Basis Transistor dikalikan untuk memberikan arus pada Kolektor. Namun khusus untuk Photo Transistor, arus Basis dikendalikan oleh jumlah cahaya atau inframerah yang diterimanya. Oleh karena itu, pada umumnya secara fisik Photo Transistor hanya memiliki dua kaki yaitu Kolektor dan Emitor sedangkan terminal Basisnya berbentuk lensa yang berfungsi sebagai sensor pendeteksi cahaya.
Pada prinsipnya, apabila Terminal Basis pada Photo Transistor menerima intensitas cahaya yang tinggi, maka arus yang mengalir dari Kolektor ke Emitor akan semakin besar. untuk lebih jelaskan, lihat di pembuaatan simulasi rangkaian sederhana dibawah.

Grafik respon sensor Phototransistor



                                contoh gambar grafik hubungan antara arus listrik dengan intensitas cahaya

 k.  Gerbang Logika AND (IC 4081 )









Gerbang AND (IC 4081) memerlukan 2 atau lebih Masukan (Input) untuk menghasilkan hanya 1 Keluaran (Output). Gerbang AND akan menghasilkan Keluaran (Output) Logika 1 jika semua masukan (Input) bernilai Logika 1 dan akan menghasilkan Keluaran (Output) Logika 0 jika salah satu dari masukan (Input) bernilai Logika 0.

Konfigurasi pin : 
  • Pin 7 adalah suplai negatif
  • Pin 14 adalah suplai positif
  • Pin 1 & 2, 5 & 6, 8 & 9, 12 & 13 adalah input gerbang
  • Pin 3, 4, 10, 11 adalah keluaran gerbang
Spesifikasi  :
    - Catu daya : 3 V - 15 V
    - Fungsi : Quad 2-Input AND Gate
    - Propagation delay : 55 ns
    - Level tegangan I/O : CMOS
    - Kemasan : DIP 14-pin

l.  Seven Segment




                             


Layar tujuh segmen adalah salah satu perangkat layar untuk menampilkan sistem angka desimal yang merupakan alternatif dari layar dot-matrix. Layar tujuh segmen ini sering kali digunakan pada jam digital, meteran elektronik, dan perangkat elektronik lainnya yang menampilkan informasi numerik.

m. Decoder (IC 74247)

     










IC 74247, merupakan IC TTL Decoder BCD to 7 Segment. IC ini berfungsi untuk mengubah kode bilangan biner BCD (Binary Coded Decimal) menjadi data tampilan untuk penampil/display 7 segment yang bekerja pada tegangan TTL (+5 volt DC).

n. Soil moisture sensor

Soil Moisture Sensor merupakan module untuk mendeteksi kelembaban tanah, yang dapat diakses menggunakan microcontroller seperti arduino.Sensor kelembaban tanah ini dapat dimanfaatkan pada sistem pertanian, perkebunan, maupun sistem hidroponik mnggunakan hidroton.

Soil Moisture Sensor dapat digunakan untuk sistem penyiraman otomatis atau untuk memantau kelembaban tanah tanaman secara offline maupun online. Sensor yang dijual pasaran mempunyai 2 module dalam paket penjualannya, yaitu sensor untuk deteksi kelembaban, dan module elektroniknya sebagai amplifier sinyal.



Jika menggunakan pin Digital Output maka keluaran hanya bernilai 1 atau 0 dan harus inisalisasi port digital sebagai Input (pinMode(pin, INPUT)). Sedangkan jika menggunkan pin Analog Output maka keluaran yang akan muncul adalah sebauah angka diantara 0 sampai 1023 dan inisialisasi hanya perlu menggunkan analogRead(pin).

CARA KERJA SENSOR

Pada saat diberikan catudaya dan disensingkan pada tanah, maka nilai Output Analog akan berubah sesuai dengan kondisi kadar air dalam tanah.


Pada saat kondisi tanah :

·                     Basah : tegangan output akan turun

·                     Kering : tegangan output akan naik

Tegangan tersebut dapat dicek menggunakan voltmeter DC. Dengan pembacaan pada pin ADC pada microcontroller dengan tingkat ketelitian 10 bit, maka akan terbaca nilai dari range 0 – 1023. Sedangkan untuk Output Digital dapat diliat pada nyala led Digital output menyala atau tidak dengan mensetting nilai ambang pada potensiometer.

·                     Kelembaban tanah melebihi dari nilai ambang maka led akan padam

·                     Kelembaban tanah kurang dari nilai ambang maka led akan menyala


O. Sensor infrared.

Sensor Infrared adalah suatu komponen elektronika yang berfungsi mendeteksi adanya objek dengan pancaran infra merah.

Gambar.2.Sensor IR.

Grafik Respon Sensor


sensor getar

Phototransistor

       








          

 

Grafik sensor Infrared :


 Grafik Rain sensor

 4.percobaan[kembali]

Langkah Percobaann:

  • Buka aplikasi proteus
  • Siapkan alat dan bahan pada library proteus
  • Pilih komponen yang dibutuhkan 
  • Rangkai setiap komponen menjadi rangkaian yang diinginkan 
  • Ubah spesifikasi komponen sesuai kebutuhan
  • Jalankan simulai rangkaian

Gambar Rangkaian :


Setelah dijalankan :



Prinsip Kerja: 

Pada rangkaian ini terdapat 5 sensor yaitu sensor vibration , soil mousture sensor, photo transistor, rain sensor dan infrared sensor. 

Pertama pada sensor vibration, yang diletakkan pada area khusus pada taman,dimana fungsinya untuk menghidupkan motor pupuk, lalu pada sensor kelembaban yang diletakkan pada bagian tanah, fungsinya untuk mendeteksi kelembaban tanah sebagai pemati motor otomatis, lalu sensor phototransistor diletakkan pada penampung air yang berfungsi untuk menghidupkan motor air, lalu pada sensor hujan diletakkan pada penampung air yang berfungsi untuk menghidupkan motor penutup, sensor infrared diletakkan pada gerbang masuk taman yang berfungsi untuk mendeteksi orang yang  lewat pada taman.

Pada rangakain ini terdapat sensor vibration yg diletakkan pada ruangan khusus di taman yang mana berfungsi untuk mendeteksi adanya adanya getaran ketika seseorang memasuki area tersebut, saat sensor vibration mendeteksi adanya getaran, maka sensor vibration akan berlogika 1, sehingga arus mengalir dari Vcc sebesar +12 volt menuju ke sensor, kemudian dari sensor mengeluarkan tegangan sebesar 5,23 volt, lalu diteruskan ke resistor dan dari resistor diumpankan ke kaki Ic 7408, selanjutnya kaki ic 7408 juga dihubungkan dengan output sensor kelembaban.

Pada sensor kelembapan terdapat 2 kondisi dimana resistansi tinggi menunjukkan tanah lembab dan resistansi lembah menunjukkan tanah kering, pada awal sensor digunakan dari kondisi resistansi rendah/ tanah kering, dari tanah yang terdeteksi kering maka untuk prinsip kerja sensor kelembapan ini keterbalikan Dari yang berada pada rangkaian yang mana rangkaian menggunakan not/inverting, dimana seharusnya sensor bekerja pada resistansi tinggi/kondisi lembab, maka sensor kelembaban aktiv

Pada Prinsip kerja sensor ini, Jika pada potensiometer menunjukkan lebih dari 71% maka motor air dan motor pupuk akan mati, lalu pada sensor ini dimulai pada resistansi rendah/ tanah dalam keadaan kering, dimana hal ini menyebabkan sensor menjadi tidak aktiv, lalu output pada sensor kelembaban dihubungkan ke induktor dan di hubungkan ke kaki Ic 7404, dimana ic 7404 ini akan menginverting tegangan pada output ic 7404 menjadi sebesar +4,99 volt lalu dihubungkan ke ic 7408 dimana output pada ic 7408 ini didapatkan dengan mengalikan kedua input annya, sehingga karena input pada ic 7408 sama sama berlogika 1 maka saat di kalikan akan menghasilkan output logika 1, dan menghasilkan tegangan sebesar 0,91 volt dimana tegangan sebesar 0,91 volt ini cukup untuk mengaktifkan transistor,  lalu arus mengalir dari vcc menuju  resistor dan menuju relay dan diumpankan ke kaki kolektor dan menuju emitor dan dihubungkan ke ground, sehingga menyebabkan switch berpindah ke kiri dan mengakibatkan motor pupuk menjadi aktiv, dan ini ditandai dengan led green hidup,

Pada pototransistor jika mendeteksi cahaya matahari maka resistansi nya rendah sehingga terjadi aliran tegangan , ketika sensor mendeteksi adanya sinar matahari maka arus akan mengalir dari vcc menuju sensor dan dari sensor dihubungkan ke kaki non inverting ,lalu pada kaki inverting dihubungkan dengan potensiometer  dimana menggunakan prinsip kerja detektor non inverting,lalu pada saat kaki non inverting terdeteksi tegangan 11.5 volt dan pada non inverting sebesar 0,8 volt sehingga tegangan pada kaki non inverting akan lebih besar dari pada kaki inverting sehingga terjadi + saturasi pada output op amp, lalu dihubungkan pada resistor, dan dari resistor dihubungkan ke ic 7408, dimana pada ic  7408 salah satu kaki nya dihubungkan dengan output sensor kelembaban, ketika tanah kering maka sensor kelembaban akan berlogika 1 dan menyebabkan input pada ic 7408 dikalikan dan output nya menjadi berlogika 1, dimana pada output nya menghasilkan tegangan sebesar 5 volt sehingga cukup untuk mengaktifkan mosfet, lalu terdapat arus dari vcc menuju relay dan dihubungkan  ke kaki  drain, dan dari kaki drain diumpankan ke kaki source dan ke ground, dimana switch  akan berpindah ke kiri dan menyebabkan motor air menjadi hidup, selanjutnya saat malam hari switch reley akan berpindah ke kanan dan mengakibatkan lampu pada malam hari menjadi hidup


Pada sensor hujan diletakkan diatas penampungan air dapat dilihat pada gambar , pada sensor saat mendeteksi hujan akan berlogika 1 sehingga output uang keluar sebesar 5 volt lalu diumpankan ke resistor dengan tegangan keluaran 0.91 volt  ini dapat mengaktifkan transistor dari sumber menuju diode dan diode berfungsi untuk membatasi tegangan pada sumber sehingga untuk motor akan terjadi switch dimana motor menutup penampung air bergerak ke kanan , yang merupakan pembuka penutup , tetapi jika arah motor ke kiro maka motor akan menutup penampung air, untuk indikator hidup sensor ditandai Led berwarna hijau dan untuk indikator sensor mati led merah,

Pada gerbang masuk taman dipasang infrared dimana infrared berfungsi mendeteksi jumlah pengunjung pada taman, ketika pengunjung lewat maka infrared sensor akan mendeteksi adanya orang sehingga ada terjadi tegangan pada sumber mengalir menuju sensor dan sensor aktiv mengeluarkan output sebesar 5 volt dan menuju resistor dimana tegangan menuju kaki A sebesar 5 volt lalu pada kaki q1 dan q2 akan mengeluarkan output 0 dan 1 lau dihubungkan ke demultiplexer dimana dihubungkan ke kaki 1 clock dimana sebelum dihubungkan ke clock inputnya Haris di notkan dulu lalu untuk prinsip kerja demultilexer digit counter dapat dilihat pada tabel kebenaran dimana ketika tegas han pada clock terjadi 1tegangan maka akan terjadi perubahan tiap angka untuk perubahan tegangan pertama clock akan berlogika 1 dari sensor sehingga terjadi perubahan pada digit counter dimana akan membuat angka 1 dan sesuai tabel kebenaran,dan ketika diberi tegangan sesaat akan terjadi counter up dari digit counter, digit counter akan aktiv setiap tegangan berlogika 1 dan seterusnya sampai angka 9 karena digunakan 2 segmen maka dapat mendeteksi jumlah pengunjung maksimal 99 orang, u6 dan u7 dihubungkan dari kaki c0 , kaki 5 ke clock sehingga Steven segmen akan terhubung dalam menampilkan angkanya, 

Lalu untuk logika yg digunakan pada Steven segmen ic 74247 

Logika 0: motor air dan motor pupuk mati

Logika 1: motor pupuk aktiv

Logika 2: motor air aktiv

Logika 3:motor air dan motor pupuk aktiv

Logika 4: se skor hujan aktiv

Logika 5: sensor hujan aktiv dan sensor vibration aktiv

Logika 6: sensor hujan aktiv dan phototransistor aktiv

 5.Video [kembali]

 6.link download[kembali]

   Download HTML [klik]
    Download File Rangkaian [klik]
    Download Video Rangkaian [klik]
    Download Datasheet Resistor [klik]
    Download Datasheet Transistor NPN [klik]
    Download Datasheet Opamp [klik]
    Download Datasheet Potensiometer [klik]
    Download Datasheet Dioda [klik]
    Download Datasheet LED [klik]
    Download Datasheet Relay [klik]
    Download Datasheet Motor DC [klik]
    Download Datasheet Baterai [klik]
    Download Datasheet 7432 (gerbang OR) [klik]
    Download Datasheet 7447 [klik]
    Download Datasheet 4555 [klik]
    Download Datasheet LM35 [klik]
    Download Datasheet soil moisture[klik]
    Download Library soil moisture [klik]
    Download Library rain sensor [klik]
    Download Datasheet rain sensor[klik]
    Download Library infrared sensor [klik]
    Download Datasheet infrared sensor [klik]
    Download Datasheet vibration sensor [klik]
    Download Datasheet Touch Sensor [klik]
    Download Library Touch Sensor [klik]